Distributed Control System ystem (DCS)

 Distributed Control System (DCS) 

A distributed control system (DCS) is a computerised control system for a process or plant usually with many control loops, in which autonomous controllers are distributed throughout the system, but there is no central operator supervisory control. This is in contrast to systems that use centralized controllers; either discrete controllers located at a central control room or within a central computer. The DCS concept increases reliability and reduces installation costs by localising control functions near the process plant, with remote monitoring and supervision.

Distributed control systems first emerged in large, high value, safety critical process industries, and were attractive because the DCS manufacturer would supply both the local control level and central supervisory equipment as an integrated package, thus reducing design integration risk. Today the functionality of Supervisory control and data acquisition (SCADA) and DCS systems are very similar, but DCS tends to be used on large continuous process plants where high reliability and security is important, and the control room is not geographically remote. 

The key attribute of a DCS is its reliability due to the distribution of the control processing around nodes in the system. This mitigates a single processor failure. If a processor fails, it will only affect one section of the plant process, as opposed to a failure of a central computer which would affect the whole process. This distribution of computing power local to the field Input/Output (I/O) connection racks also ensures fast controller processing times by removing possible network and central processing delays.


The accompanying diagram is a general model which shows functional manufacturing levels using computerised control.

Referring to the diagram;

Level 0 contains the field devices such as flow and temperature sensors, and final control elements, such as control valves

Level 1 contains the industrialised Input/Output (I/O) modules, and their associated distributed electronic processors.

Level 2 contains the supervisory computers, which collect information from processor nodes on the system, and provide the operator control screens.

Level 3 is the production control level, which does not directly control the process, but is concerned with monitoring production and monitoring targets

Level 4 is the production scheduling level.

Levels 1 and 2 are the functional levels of a traditional DCS, in which all equipment are part of an integrated system from a single manufacturer.

Levels 3 and 4 are not strictly process control in the traditional sense, but where production control and scheduling takes place.

The processor nodes and operator graphical displays are connected over proprietary or industry standard networks, and network reliability is increased by dual redundancy cabling over diverse routes. This distributed topology also reduces the amount of field cabling by siting the I/O modules and their associated processors close to the process plant.

The processors receive information from input modules, process the information and decide control actions to be signalled by the output modules. The field inputs and outputs can be analog signals e.g. 4–20 mA DC current loop or two-state signals that switch either "on" or "off", such as relay contacts or a semiconductor switch.

DCSs are connected to sensors and actuators and use setpoint control to control the flow of material through the plant. A typical application is a PID controller fed by a flow meter and using a control valve as the final control element. The DCS sends the setpoint required by the process to the controller which instructs a valve to operate so that the process reaches and stays at the desired setpoint. (see 4–20 mA schematic for example).

Large oil refineries and chemical plants have several thousand I/O points and employ very large DCS. Processes are not limited to fluidic flow through pipes, however, and can also include things like paper machines and their associated quality controls, variable speed drives and motor control centers, cement kilns, mining operations, ore processing facilities, and many others.

DCSs in very high reliability applications can have dual redundant processors with "hot" switch over on fault, to enhance the reliability of the control system.

Although 4–20 mA has been the main field signalling standard, modern DCS systems can also support fieldbus digital protocols, such as Foundation Fieldbus, profibus, HART, modbus, PC Link, etc.

Modern DCSs also support neural networks and fuzzy logic applications. Recent research focuses on the synthesis of optimal distributed controllers, which optimizes a certain H-infinity or the H 2 control criterion.

Distributed control systems (DCS) are dedicated systems used in manufacturing processes that are continuous or batch-oriented.


Processes where a DCS might be used include:

Chemical plants

Petrochemical (oil) and refineries

Pulp and paper mills (see also: quality control system QCS)

Boiler controls and power plant systems

Nuclear power plants

Environmental control systems

Water management systems

Water treatment plants

Sewage treatment plants

Food and food processing

Agrochemical and fertilizer

Metal and mines 

Evolution of process control operations

Process control of large industrial plants has evolved through many stages. Initially, control would be from panels local to the process plant. However this required a large manpower resource to attend to these dispersed panels, and there was no overall view of the process. The next logical development was the transmission of all plant measurements to a permanently-manned central control room. Effectively this was the centralisation of all the localised panels, with the advantages of lower manning levels and easier overview of the process. Often the controllers were behind the control room panels, and all automatic and manual control outputs were transmitted back to plant. However, whilst providing a central control focus, this arrangement was inflexible as each control loop had its own controller hardware, and continual operator movement within the control room was required to view different parts of the process.

With the coming of electronic processors and graphic displays it became possible to replace these discrete controllers with computer-based algorithms, hosted on a network of input/output racks with their own control processors. These could be distributed around plant, and communicate with the graphic display in the control room or rooms. The distributed control system was born.

The introduction of DCSs allowed easy interconnection and re-configuration of plant controls such as cascaded loops and interlocks, and easy interfacing with other production computer systems. It enabled sophisticated alarm handling, introduced automatic event logging, removed the need for physical records such as chart recorders, allowed the control racks to be networked and thereby located locally to plant to reduce cabling runs, and provided high level overviews of plant status and production levels.



Comments

Popular posts from this blog

Electrical Engineering Top Interview Questions and Answers 1 to 50

Induction Motor & Generator

Electrical Engineering Top Interview Questions And Answers 1000